skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Covey, Jacob_P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Quantum networks providing shared entanglement over a mesh of quantum nodes will revolutionize the field of quantum information science by offering novel applications in quantum computation, enhanced precision in networks of sensors and clocks, and efficient quantum communication over large distances. Recent experimental progress with individual neutral atoms demonstrates a high potential for implementing the crucial components of such networks. We highlight latest developments and near-term prospects on how arrays of individually controlled neutral atoms are suited for both efficient remote entanglement generation and large-scale quantum information processing, thereby providing the necessary features for sharing high-fidelity and error-corrected multi-qubit entangled states between the nodes. We describe both the functionality requirements and several examples for advanced, large-scale quantum networks composed of neutral atom processing nodes. 
    more » « less